Direct Volume Rendering of Photographic Volumes Using Multi-Dimensional Color-Based Transfer Functions

نویسندگان

  • Christopher J. Morris
  • David S. Ebert
چکیده

Traditionally, volume rendering of medical data has been comprised of transfer functions that map a scalar value, usually a MRI or CT intensity, to an opacity. Corresponding color maps are either selected regardless of the actual physical color of the volume (i.e. greyscale) or predetermined as in photographic volumes. Rarely has the voxel color been used as a means to define the associated opacity value. By using transfer functions that map multichannel color values(RGB or CIE L∗u∗v∗) to opacity, we can generate compelling and informative renderings that provide consistent boundary extraction throughout the volume. We present renderings of the Visible Human photographic volume using multi-dimensional color-based transfer functions. These functions were constructed by using gradient boundary enhancement techniques in conjunction with volume illustration techniques and incorporating the first and second directional derivatives along the gradient direction. We empirically compare the effectiveness of using the color-based transfer functions and discuss their applications and potential for future development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Effective Transfer Functions for Volume Rendering from Photographic Volumes

ÐPhotographic volumes present a unique, interesting challenge for volume rendering. In photographic volumes, voxel color is predetermined, making color selection through transfer functions unnecessary. However, photographic data does not contain a clear mapping from the multivalued color values to a scalar density or opacity, making projection and compositing much more difficult than with tradi...

متن کامل

Multidimensional Transfer Functions for Interactive Volume Rendering

Most direct volume renderings produced today employ onedimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract materials and their boundaries for both scalar and multivariate data...

متن کامل

Multi-Dimensional Transfer Function Design for Scientific Visualization

Direct volume rendering of field data can be accomplished through a correct choice of transfer functions that map data values to visual properties such as transparency and color. Such one-dimensional transfer functions, especially when specified through trial and error selection, often prove inadequate for producing correct and informative visualizations. In this paper, we consider multi-dimens...

متن کامل

Closed-Form Approximations to the Volume Rendering Integral with Gaussian Transfer Functions

In direct volume rendering, transfer functions map data points to optical properties such as color and opacity. We have found transfer functions based on the Gaussian primitive to be particularly useful for multivariate volumes, because they are simple and rely on a limited number of free parameters. We show how this class of transfer function primitives can be analytically integrated over a li...

متن کامل

Multi-dimensional Reduction and Transfer Function Design using Parallel Coordinates

Multi-dimensional transfer functions are widely used to provide appropriate data classification for direct volume rendering. Nevertheless, the design of a multi-dimensional transfer function is a complicated task. In this paper, we propose to use parallel coordinates, a powerful tool to visualize high-dimensional geometry and analyze multivariate data, for multi-dimensional transfer function de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002